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Introduction

RDB Design Problems:
Deletion anomalies
Insertion anomalies
Modification anomalies



Introduction

what is data redundancy?

repeated appearances of a data value # data
redundancy

unneeded repetition that does not add new meaning
= data redundancy

data redundancy — modification anomalies



Introduction

Are there data redundancies?

STOCK

Store Product Price Quantity Location Discount | Sq_ft Manager
15 Refrigerator | 1850 | 120 Houston I 5% | 2300 Metzger
15 Dishwasher 600 150 Houston 5% 2300 Metzger
13 Dishwasher 600 180 Tulsa 10% 1700 Metzger
14 Refrigerator 1850 150 Tulsa 5% 1900 Schott
14 Television 1400 280 Tulsa 10% 1900 Schott
14 Humidifier 55 30 Tulsa 1900 Schott
17 Television 1400 10 Memphis 2300 Creech
17 Vacuum Cleaner 300 150 Memphis 5% 2300 Creech
17 Dishwasher 600 150 Memphis 5% 2300 Creech
11 Computer 180 Houston 10% 2300 Creech
11 | Refrigerator [1850 ] 120 Houston [ 5%] 2300 Creech
11 Lawn Mower 300 Houston 2300 Creech

yes - for price, location, and discount



Functional Dependencies (FD) Definition

e Let R be a relation scheme and X, Y be sets of attributes in R.
e A functional dependency from X to Y exists if and only if:

— For every instance of |R| of R, if two tuples in |R| agree on A—B
the values of the attributes in X, then they agree on the values / \
of the attributes in Y determinant dependent

e We write X — Y and say that X determines Y
 Example on PGStudent (sid, name, supervisor_id, specialization):
— {supervisor_id} — {specialization} means

o If two student records have the same supervisor (e.g., Dimitris),
then their specialization (e.g., Databases) must be the same

* On the other hand, if the supervisors of 2 students are different,
we do not care about their specializations (they may be the same
or different).

e Sometimes, we omit the brackets for simplicity:
— supervisor_id — specialization
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Closure of a Set of Functional Dependencies § Armstrong

axioms

e Given a set of functional dependencies F, there are certain other
functional dependencies that are logically implied by F.

e The set of all functional dependencies /ogically implied by F is
the closure of F.

e We denote the closure of F by F*.
e We can find all of F* by applying Armstrong’s Axioms:

— if Y < X, then X > Y (reflexivity)
— if X =Y, then ZX — ZY (augmentation)
— ifX>Yand Y- Z, then X — Z (fransitivity) — Proof

these rules are sound and complete.



Armstrong Axioms

Armstrong axioms are sound, we mean that given a set
of functional dependencies F specified on a relation
schema R, any dependency that we can infer from F by
using the primary rules of Armstrong axioms holds in every
relation state r of R that satisfies the dependencies in F.

Armstrong axioms are complete, we mean that using
primary rules of Armstrong axioms repeatedly to infer
dependencies until no more dependencies can be inferred
results in the complete set of all possible dependencies that
can be inferred from F.



Armstrong Axioms

Armstrong axioms are sound, we mean that given a set
of functional dependencies F specified on a relation
schema R, any dependency that we can infer from F by
using the primary rules of Armstrong axioms holds in every
relatio ‘ ‘ in F.

Armstrg
primar
depeng
results

using
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nferred
cies that

’ . .
Armstrong s axioms play a crucial role
In the design, normalization, and analysis

of relational databases.



Examples of Armstrong’s Axioms

if Y < X, then X — Y (reflexivity generates trivial FDS)
name — name

name, supervisor_id — name

name, supervisor_id — supervisor_id

if X =Y, then ZX — ZY (augmentation)
sid — name (given)
supervisor_id, sid —supervisor_id, name

if X ->Yand Y- Z, then X — Z ({ransitivity)
sid — supervisor_id (given)
supervisor_id — specialization (given)
sid — specialization



Rules of Axioms

1. Decomposition
I A—BC, then A—B and A—C

A-»BC (given) (i)

BC»B (reflexivity) (ii)

A-»B (transitivity from i and ii)



Rules of Axioms

2. Composition
If A—~B and C—D then AC—BD

A-B

C-D

AC-BC

AC-B

AC-AD

AC-D

AC-BD

(1)

_ (ii)

(iii) (Augmentation of i and C)

(iv) Decomposition of iii)

(v) (Augmentation of ii and A)

(vi) (Decomposition of v)

(Union iv and vi)



Rules of Axioms

3. Union (Notation)
If A—»B and A—C then A—»BC

A-B (i) (given)

A->C (ii) (given)

A-AC (iii) (Augmentation of ii and A)
AC-BC__ (iv) (Augmentation of i and C)

A-BC (transitivity of iii and ii)



Rules of Axioms

4. Pseudo transitivity
If A—»B and BC—D then AC—D

A->B (i) (Given)
BC-D (ii) (Given)
AC-BC (iii) (Augmentation of i and C)

AC -D (Transitivity of iii and ii)



Rules of Axioms

5. Self-determination
A—A for any given A.

This rule directly follows the Axiom of Reflexivity.



Rules of Axioms

6. Extensivity
Extensivity is a particular case of augmentation where C=A

ACSA_ (i)

If A—B, then A—AB P (i1)
AC-+B (iii) (Transitivity of i and ii)
AC-ABC (iv) (Extensivity of iii)
ABC»BC____ (v) (Reflexivity)

AC-BC (Transitivity of iv and v)

In the sense that augmentation can be proven from extensivity and other
axioms, extensivity can replace augmentation as an axiom.



Additional Rules

e We can further simplify computation of F* by using the following
additional rules.

— If X = Y holds and X — Z holds, then X — YZ holds (wrion)
— If X = YZ holds, then X — Y holds and X — Z holds (decomposition)
— If X=Y holds and ZY—W holds, then ZX—W holds (pseudotransitivity)

e The above rules can be inferred from Armstrong’s axioms.
E.g., pseudotransitivity
X-=Y, ZY>W (given)
IX—7ZY (by augmentation)
/X—W (by transitivity)



Example of FDs in the closure F+

*R=(A,B,C,G HI

F={A > B
A — C
CG - H
CG —» 1
B — H}

e some members of F~
A - H
AG — 1

CG — HI

A—>B;B—>H
A—>CAG>CG, CG-o1



Closure of Attribute Sets

e The closure of X under F (denoted by X*) is the set of attributes
that are functionally determined by X under F:

X—>YisinFre Yo Xt
Given sid

If sid — name
then name is part of sid*
i.e., sid*= {sid, name, ...}

If sid — supervisor_id
then supervisor_id is part of sid*
i.e., sid*= {sid, name, supervisor_id, ...}

If sid — specialization then continue ....
Else stop



Aldorithm for Computing Attribute

Closure

e Input:
R a relation scheme
F a set of functional dependencies

X < R (the set of attributes for which we want to compute the
closure)

e Qutput:
X* the closure of X w.r.t. F

X0) := X
Repeat

X(i+1) = X  Z, where Z is the set of attributes such that
there exists Y—>Z in F, and Y < X®
Until X(+1) := X®
Return X(+1)



Closure of a Set of Attributes: Example

e R ={AB,C,D,EG}

o F={{AB}—>{C} {C}—>{A}, {B,C}—{D}, {A,C,D}—~{B},
{D}—{E,G}, {B,E}—>{C}, {C,G}—{B,D}, {C,E}—>{A,G}}

e X ={B,D}

e X© = {B,D}
{D}—{E,G},

e X = {B,D,E,G),
{B,E}—>{C}

e X@={B,C,D,EG)},
{Cr—{A}

e X®={AB,C,D,EG)

o X& = XB
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Trivial FDs

» A functional dependency X — Y is trivial if Y is a subset of X
— {name, supervisor_id} — {name}

e If two records have the same values on both the name and
supervisor_id attributes, then they obviously have the same
supervisor_id.

» Trivial dependencies hold for all relation instances

e A functional dependency X — Y is non-trivial if YA X = &
— {supervisor_id} — {specialization}

* Non-trivial FDs are given in the form of constraints when designing a
database.

— For instance, the specialization of a students must be the same as
that of the supervisor.

e They constrain the set of legal relation instances. For instance, if I try
to insert two students under the same supervisor with different
specializations, the insertion will be rejected by the DBMS

e Some FDs are neither trivial nor non-trivial.



Transitive Functional Dependency

In transitive functional dependency, dependent is
indirectly dependent on determinant.
ie.Ifa— b &b — ¢, then according to axiom of transitivity, a — c.

Transitive FD.

enrol no | name | dept | building no

42 abc CO | 4

43 pqr EC 2

34 Xyz IT |




Full Functional Dependency

A functional dependency of the form Z — Ais a “full
functional dependency’ if and only if no proper subset
of Z functionally determines A.

It Z—> Aand X — A, and X is a proper subset of Z, then
Z does not fully functionally determine A, ie, Z — A'is
not a full functional dependency; it is a partial
dependencuy.



Irreducible FD

No redundancy
Simple attribute on the right hand of FD
Left side of FD should be irreducible

1. Each functional dependency has only one attribute on the right-hand side (RHS).

e Example: A — B, not A — BC
2. The left-hand side (LHS) of each FD is minimal.

e There's no extraneous attribute. If AB — C exists, but A — C also holds, then B is redundant.
3. No dependency can be inferred from the others.

e |f you remove any FD, you lose essential dependency information.



Complete and Incomplete FD

An attribute B is completely functionally dependent on a set of
attributes A if:

A — B and for every proper subset A’ c A, A » B

If exists then X is reducible and X->Y is an incomplete FD

-
-
-
-
-
-
-
-
-
-
-
e -
-
-
-

A->Y

(A,B)>Y = Incomplete FD




Irreducible FD

if we have a complete FD like A->y then the incomplete
FD (A,B)->Y can be inferred. Why?



Functional Dependencies and Keys

e A FD is a generalization of the notion of a key.

e For PGStudent (sid, name, supervisor_id, specialization),
we write:

e {sid} — {name, supervisor_id, specialization}

— The sid determines all attributes (i.e., the entire
record)

— If two tuples in the relation student have the same sid,
then they must have the same values on all attributes.

— In other words they must be the same tuple (since the
relational model does not allow duplicate records)



Superkeys and Candidate Keys using FD

e A set of attributes that determines the entire tuple is a
superkey

— {sid, name} is a superkey for the PGstudent table.
— Also {sid, name, supervisor_id} etc.

* A minimal set of attributes that determines the entire tuple is a
candidate key

— {sid, name} is not a candidate key because I can remove
the name.

— sid is a candidate key

e If there are multiple candidate keys, the DB designer chooses
designates one as the primary key.



Attributes of FD can be single or composite.
If Kin relation R be a Super Key (SK) or Candidate Key
(CK) and GcHR then
K—>G
How to represent the FD of a relation?
a) F={A-B, B—C, A-D}

|AF—lBH—C
L—[b
c) Vv v




Notes

A FD in R is undesirable when the determinant

Review: A candidate key is a superkey with no proper subset that

uniquely identifies a tuple of a relation. {uniqueness property +
irreducibility}



Notes

A FD in R is undesirable when the determinant

Review: A candidate key is a superkey with no proper subset that

UrIN. |AI t\lf\.f\-l--c ~ A~ o~ +. |u-\|t\ A-f ~ fl\lf\l‘l- ~ f AAAAAAAAAAAAAAAAAAAA 41 +

"

A candidate key is a set X of attributes in R such that
@ X7 includes all the attributes in R.

@ There is no proper subset Y of X such that Y™ includes all the
attributes in R.

Note: A proper subset Y is a subset of X such that Y # X (i.e., X has
at least one element not in Y).



Uses of Attribute Closure

e Testing for superkey

— To test if X is a superkey, we compute X*- and check if X* contains
all attributes of R.

e Testing functional dependencies

— To check if a functional dependency X — Y holds (or, in other
words, X —» Y is in /), just check if Y < X*.

e Computing the closure of F

— For each subset X = R we find the closure X*, and for each Y <X*,
we output a functional dependency X — Y.
e Computing if two sets of functional dependencies F and G are
equivalent, i.e., F+ = G+

— For each functional dependency Y—Z in F
e Compute Y+ with respect to G
o IfZc Y+ then Y—=Zis in G+

— And vice versa



Redundancy of FDs

» Sets of functional dependencies may have redundant
dependencies that can be inferred from the others

— {A}—{C} is redundant in: {{A}—{B}, {B}—>{C} {A}— {C}}

e Parts of a functional dependency may be redundant
— Example of extraneous/redundant attribute on RHS:
{{A}—{B}, {B}—>{C}, {A}—>{C,D}} can be simplified to
{{A}—{B}, {B}—>{C}, {A}—>{D}}

(because {A}—{C} is inferred from {A} — {B}, {B}—~>{C})

— Example of extraneous/redundant attribute on LHS:
{{A}—{B}, {B}—{C}, {A,C}—{D}} can be simplified to
{{A}—{B}, {B}—>{C}, {A}—>{D}}

(because of {A}—{C})



Canonical Cover

e A canonical coverfor Fis a set of dependencies F_.such that
— Fand F_.are equivalent

— F_contains no redundancy

— Each left side of functional dependency in £, is unique.
e For instance, if we have two FD X—Y, X—Z, we convert them to X—YZ.
e Algorithm for canonical cover of F:
repeat
Use the union rule to replace any dependencies in ~
Xi—=>Y;and Xy - Y, with Xy - Y, Y,
Find a functional dependency X — Y with an
extraneous attribute either in X orin'Y
If an extraneous attribute is found, delete it from X — Y
until ~does not change

e Note: Union rule may become applicable after some extraneous
attributes have been deleted, so it has to be re-applied



Example of Computing a Canonical Cover

e Combine A — BCand A — Binto A— BC
— Setisnow {A— BC, B~ (¢, AB— (}
e Ais extraneous in AB — Cbecause of B— C.
— Setis now {A — BC, B— C}
e (is extraneous in A— BCbecause of A —» Band B— C.
e The canonical cover is:

A—> B
B—> C



Pitfalls in Relational Database Design

e Relational database design requires that we find a
“good” collection of relation schemas.

e Functional dependencies can be used to refine ER
diagrams or independently (i.e., by performing
repetitive decompositions on a "universal” relation
that contains all attributes).

e A bad design may lead to several problems.
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Problems of Bad Design

Assume the position determines the salary:

T1 position — salary
first_name last_name address department position salary
Dewi Srijaya 12a Jin Lempeng Toys clerk 2000
Izabel Leong 10 Outram Park Sports trainee 1200
John Smith 107 Clementi Rd Toys clerk 2000 Rl:'.‘dlllldail'( storace
Axel Bayer 55 Cuscaden Rd Sports trainee 1200 -
Winny Lee 10 West Coast Rd Sports manager 2500
Sylvia Tok 22 East Coast Lane Toys manager 2600 :> Upda're 21110111611}-’
Eric Wei 100 Jurong drive Toys assistant manager 2200
? ? ? ? security guard 1500

-

key

N\
Potential deletion anomaly

Insertion anomaly




Decomposition Example

12

‘ first_name last_name | address department position
Dewi Srijaya 12a Jin lempeng Toys clerk
lzabel Leong 10 Qutram Park Sports trainee
John Smith 107 Clementi Rd Toys clerk
Axel Bayer 55 Cuscaden Rd Sports trainee
Winny Lee 10 West Coast Rd Sports manager
Sylvia Tok 22 East Coast Lane Toys manager

100 Jurong drive Toys

13

‘ position salary

clerk 2000 No Redundant storage
trainee 1200 No Update anomaly
manager 2500

assistant manager 2200



Normalization

e Normalization is the process of decomposing a
relation schema R into fragments (i.e., smaller
tables) R, R,,.., R.. Our goals are:

— Lossless decomposition: The fragments should contain the
same information as the original table. Otherwise
decomposition results in information loss.

— Dependency preservation: Dependencies should be
preserved within each R, , i.e., otherwise, checking updates
for violation of functional dependencies may require
computing joins, which is expensive.

— Good form: The fragments R should not involve
redundancy. Roughly speaking, a table has redundancy if
there is a FD where the LHS is not a key (more on this
later).



Lossless Join Decomposition

e A decomposition is lossless (aka lossless join) if we can recover
the initial table

e In general a decomposition of R into R; and R, is lossless if and
only if at least one of the following dependenoes is in F*;

- Rl (M R2 —> Rl
— In other words, the common attribute of R; and R, must be
a candidate key for R, or R..

¢ Is the previous decomposition example (T2, T3) lossless?

— Yes because the common attribute of T2, T3 is position and it
determines the salary; therefore it is a key for T3.



Example of a Lossy Decomposition

e Decompose R = (A,B,C) into R, = (A,B) and R, = (B,C)

A B|C II,e(r)| A | B IMg(r)| B | C
a |1l | m a |1 1 | m
a |2 | n =) 4 | 2 > 1 h
bl 1]|p b |1 1| p
A|B|C
HA,B(r) > HB!(:(r) 2 1| m
a|1]p It 1s a lossy decomposition:
2l 2| n two extraneous tuples.
b | 1|, Yougetmore,notless!!
b|1]p B is not a key of either small table




Dependency Preserving Decomposition

e The decomposition of a relation scheme R with FDs F
IS a set of tables (fragments) R, with FDs F,

e F is the subset of dependencies in F* (the closure of
F) that include only attributes in R..

e The decomposition is dependency preserving if and
only if

(b F)* =F*



Non Dependency Preserving

Decomposition Example

R = (A, B, C), F = {{A}>{B}, {B}>{C}, {A}>{C}}. Key: A

There is a dependency {B}— {C}, where the LHS is not the key, meaning that there can be
considerable redundancy in R.

Solution: Break it in two tables R1(A,B), R2(A,C) (normalization)

A B C A B A &
1 2 3 1 2 1 3
2 2 3 ) ’ p) 3
s [ 2 [ 3 aEnl EE
412 | 4 1S 4 16

The decomposition is lossless because the common attribute A is a key for R1 (and R2)

The decomposition is not dependency preserving because F1={{A}—>{B}}, F2={{A}—>{C}} and
(F1UF2)*#F*. We lost the FD {B}—{C}.

In practical terms, each FD is implemented as an assertion, which it is checked when there

are updates. In the above example, in order to find violations, we have to join R1 and
R2. Can be very expensive.



Dependency Preserving Decomposition

Example

R=(A, B, C), F = {{A}>{B}, (B} >{C}, {A} >{C}}. Key: A
Break R in two tables R1(A,B), R2(B,C)

A | B | C A | B B | C
1 | 2 | 3 L] 2 2|3
R » | 2
> | 2 | 3 2 |2 5| &
3| 2 | 3 3 1 2
4+ | 5| ¢ 41 5

The decomposition is lossless because the common attribute B is a key for R2

The decomposition is dependency preserving because F1={{A}—{B}}, F2={{B}—{C}} and
(F1UF2)+=F+

Violations can be found by inspecting the individual tables, without performing a join.
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