

Functional Dependencies

CE384: Database Design
Maryam Ramezani
Sharif University of Technology
maryam.ramezani@sharif.edu

RDB Design Problems:

- Deletion anomalies
- Insertion anomalies
- Modification anomalies

What is data redundancy?

- repeated appearances of a data value ≠ data redundancy
- unneeded repetition that does not add new meaningdata redundancy
- data redundancy → modification anomalies

Are there data redundancies?

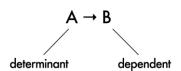
STOCK

Store	Product	Price	Quantity	Location	Discount	Sq_ft	Manager
	- (1						
15	Refrigerator	1850	120	Houston	5%	2300	Metzger
15	Dishwasher	600	150	Houston	5%	2300	Metzger
13	Dishwasher	600	180	Tulsa	10%	1700	Metzger
14	Refrigerator	1850	150	Tulsa	5%	1900	Schott
14	Television	1400	280	Tulsa	10%	1900	Schott
14	Humidifier	55	30	Tulsa		1900	Schott
17	Television	1400	10	Memphis		2300	Creech
17	Vacuum Cleaner	300	150	Memphis	5%	2300	Creech
17	Dishwasher	600	150	Memphis	5%	2300	Creech
11	Computer		180	Houston	10%	2300	Creech
11	Refrigerator	1850	120	Houston	5%	2300	Creech
11	Lawn Mower	300		Houston		2300	Creech

yes - for price, location, and discount

Functional Dependencies (FD) Definition

- Let R be a relation scheme and X, Y be sets of attributes in R.
- A functional dependency from X to Y exists if and only if:
 - For every instance of |R| of R, if two tuples in |R| agree on the values of the attributes in X, then they agree on the values of the attributes in Y



- We write X → Y and say that X determines Y
- Example on PGStudent (<u>sid</u>, name, supervisor_id, specialization):
 - {supervisor_id} → {specialization} means
 - If two student records have the same supervisor (e.g., Dimitris), then their specialization (e.g., Databases) must be the same
 - On the other hand, if the supervisors of 2 students are different, we do not care about their specializations (they may be the same or different).
- Sometimes, we omit the brackets for simplicity:
 - supervisor_id → specialization

Example

\mathbf{R} (A,	В,	C)		!A→B
a_1	b_1	c_1	$a_1 \rightarrow b_1$	§A→C
a_1	b_1	\mathbf{c}_2	C.	
\mathbf{a}_2	b_2	\mathbf{c}_2	$a_1 < \frac{c_1}{c_2}$	§B→A
a_3	b_3	c_3	-2	%B→C
a_4	b_2	C_3		: D →C

Prerequisites

Closure of a Set of Functional Dependencies & Armstrong axioms

- Given a set of functional dependencies F, there are certain other functional dependencies that are logically implied by F.
- The set of all functional dependencies logically implied by F is the closure of F.
- We denote the closure of F by F⁺.
- We can find all of F⁺ by applying Armstrong's Axioms:
 - if Y ⊆ X, then X \rightarrow Y (*reflexivity*)
 - if $X \rightarrow Y$, then $ZX \rightarrow ZY$ (*augmentation*)
 - if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$ (*transitivity*) **Proof**

these rules are sound and complete.

Armstrong Axioms

- Armstrong axioms are **SOUNd**, we mean that given a set of functional dependencies F specified on a relation schema R, any dependency that we can infer from F by using the primary rules of Armstrong axioms holds in every relation state r of R that satisfies the dependencies in F.
- Armstrong axioms are complete, we mean that using primary rules of Armstrong axioms repeatedly to infer dependencies until no more dependencies can be inferred results in the complete set of all possible dependencies that can be inferred from F.

Armstrong Axioms

 Armstrong axioms are **SOUND**, we mean that given a set of functional dependencies F specified on a relation schema R, any dependency that we can infer from F by using the primary rules of Armstrong axioms holds in every relation

Armstre
 primare
 depend
 results
 can be

Armstrong's axioms play a crucial role in the design, normalization, and analysis of relational databases.

nfer nferred ncies that

using

Examples of Armstrong's Axioms

- if Y ⊆ X, then X → Y (*reflexivity* generates trivial FDs)
 name → name
 name, supervisor_id → name
 name, supervisor_id → supervisor_id
- if X → Y, then ZX → ZY (augmentation)
 sid → name (given)
 supervisor_id, sid →supervisor_id, name
- if X → Y and Y→ Z, then X → Z (transitivity)
 sid → supervisor_id (given)
 supervisor_id → specialization (given)
 sid → specialization

1. Decomposition

If $A \rightarrow BC$, then $A \rightarrow B$ and $A \rightarrow C$

2. Composition

If $A \rightarrow B$ and $C \rightarrow D$ then $AC \rightarrow BD$

```
C→D (ii)
AC→BC_____(iii) (Augmentation of i and C)
AC\rightarrow B____(iv) Decomposition of iii)
AC\rightarrow AD____(v) (Augmentation of ii and A)
AC \rightarrow D (vi) (Decomposition of v)
AC→BD (Union iv and vi)
```

3. Union (Notation)

If $A \rightarrow B$ and $A \rightarrow C$ then $A \rightarrow BC$

A→B	_(i) (given)
A->C	_(ii) (given)
A→AC	_(iii) (Augmentation of ii and A)
AC→BC	_(iv) (Augmentation of i and C)
A→BC	(transitivity of iii and ii)

4. Pseudo transitivity

If $A \rightarrow B$ and $BC \rightarrow D$ then $AC \rightarrow D$

A→B(i) (Given)
BC→D(ii) (Given)
AC→BC(iii) (Augmentation of i and C)
AC →D(Transitivity of iii and ii)

5. Self-determination

 $A \rightarrow A$ for any given A.

This rule directly follows the Axiom of Reflexivity.

6. Extensivity

Extensivity is a particular case of augmentation where C=A

If $A \rightarrow B$, then $A \rightarrow AB$

In the sense that augmentation can be proven from extensivity and other axioms, extensivity can replace augmentation as an axiom.

Additional Rules

 We can further simplify computation of F⁺ by using the following additional rules.

```
- If X \to Y holds and X \to Z holds, then X \to YZ holds (union)
```

- If $X \to YZ$ holds, then $X \to Y$ holds and $X \to Z$ holds (*decomposition*)
- If $X \rightarrow Y$ holds and $ZY \rightarrow W$ holds, then $ZX \rightarrow W$ holds (*pseudotransitivity*)
- The above rules can be inferred from Armstrong's axioms.

E.g., pseudotransitivity

```
X \rightarrow Y, ZY \rightarrow W (given)

ZX \rightarrow ZY (by augmentation)

ZX \rightarrow W (by transitivity)
```

Example of FDs in the closure F+

•
$$R = (A, B, C, G, H, I)$$

•
$$F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$$

• some members of F⁺

$$A \rightarrow H$$

$$AG \rightarrow I$$

$$CG \rightarrow HI$$

$$A \rightarrow B; B \rightarrow H$$

 $A \rightarrow C; AG \rightarrow CG; CG \rightarrow I$

Closure of Attribute Sets

• The closure of X under F (denoted by X⁺) is the set of attributes that are functionally determined by X under F:

```
X \rightarrow Y is in F^+ \Leftrightarrow Y \subset X^+
```

X is a set of attributes

```
Given sid
If sid \rightarrow name
then name is part of sid+
i.e., sid^+= \{sid, name, ...\}
If sid \rightarrow supervisor id
then supervisor id is part of sid+
i.e., sid+= {sid, name, supervisor id, ...}
If sid \rightarrow specialization then continue ....
Else stop
```

Maryam Ramezani Database Design 2⁻⁻

Algorithm for Computing Attribute Closure

Input:

 R a relation scheme
 F a set of functional dependencies

 $X \subset R$ (the set of attributes for which we want to compute the closure)

Output:

X⁺ the closure of X w.r.t. F

```
X^{(0)}:=X Repeat X^{(i+1)}:=X^{(i)}\cup Z, where Z is the set of attributes such that there exists Y\to Z in F, and Y\subset X^{(i)} Until X^{(i+1)}:=X^{(i)} Return X^{(i+1)}
```

Closure of a Set of Attributes: Example

- R = {A,B,C,D,E,G}
- $F = \{ \{A,B\} \rightarrow \{C\}, \{C\} \rightarrow \{A\}, \{B,C\} \rightarrow \{D\}, \{A,C,D\} \rightarrow \{B\}, \{D\} \rightarrow \{E,G\}, \{B,E\} \rightarrow \{C\}, \{C,G\} \rightarrow \{B,D\}, \{C,E\} \rightarrow \{A,G\} \}$
- $X = \{B,D\}$
- $X^{(0)} = \{B,D\}$ $\{D\} \rightarrow \{E,G\},$
- X⁽¹⁾ = {B,D,E,G},
 {B,E}→{C}
- X⁽²⁾ = {B,C,D,E,G},
 {C}→{A}
- $X^{(3)} = \{A,B,C,D,E,G\}$
- $X^{(4)} = X^{(3)}$

Types of FDs

Trivial FDs

- A functional dependency X → Y is trivial if Y is a subset of X
 - {name, supervisor_id} → {name}
 - If two records have the same values on both the name and supervisor_id attributes, then they obviously have the same supervisor_id.
 - Trivial dependencies hold for all relation instances
- A functional dependency X → Y is non-trivial if Y ∩ X = Ø
 - {supervisor_id} → {specialization}
 - Non-trivial FDs are given in the form of constraints when designing a database.
 - For instance, the specialization of a students must be the same as that of the supervisor.
 - They constrain the set of legal relation instances. For instance, if I try
 to insert two students under the same supervisor with different
 specializations, the insertion will be rejected by the DBMS
- Some FDs are neither trivial nor non-trivial.

Transitive Functional Dependency

 In transitive functional dependency, dependent is indirectly dependent on determinant.

• i.e. If $a \rightarrow b \& b \rightarrow c$, then according to axiom of transitivity, $a \rightarrow c$.

■ Important note:!!!!!! If we also have $b \rightarrow a$ then it's a Trivial

Transitive FD.

enrol_no	name	dept	building_no
42	abc	СО	4
43	pqr	EC	2
44	xyz	IT	1

Full Functional Dependency

- A functional dependency of the form Z → A is a 'full functional dependency' if and only if no proper subset of Z functionally determines A.
- If Z → A and X → A, and X is a proper subset of Z, then Z does not fully functionally determine A, i.e., Z → A is not a full functional dependency; it is a partial dependency.

Irreducible FD

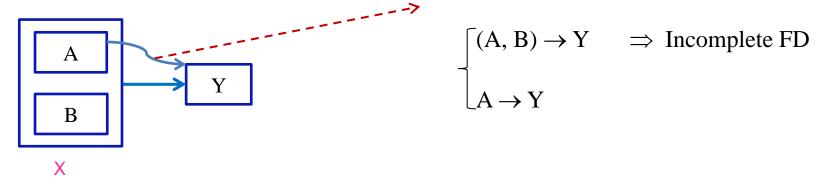
- No redundancy
- Simple attribute on the right hand of FD
- Left side of FD should be irreducible
 - 1. Each functional dependency has only one attribute on the right-hand side (RHS).
 - Example: $A \to B$, not $A \to BC$
- 2. The left-hand side (LHS) of each FD is minimal.
 - ullet There's no extraneous attribute. If AB o C exists, but A o C also holds, then B is redundant.
- 3. No dependency can be inferred from the others.
 - If you remove any FD, you lose essential dependency information.

Complete and Incomplete FD

 An attribute B is completely functionally dependent on a set of attributes A if:

$$A \to B$$
 and for every proper subset $A' \subset A$, $A' \nrightarrow B$

If exists then X is reducible and X->Y is an incomplete FD



Irreducible FD

If we have a complete FD like A->y then the incomplete FD (A,B)->Y can be inferred. Why?

$$A -> Y => (A,B) -> (Y,B) => (A,B) -> Y and (A,B) -> B$$

Functional Dependencies and Keys

- A FD is a generalization of the notion of a key.
- For PGStudent (<u>sid</u>, name, supervisor_id, specialization), we write:
- {sid} → {name, supervisor_id, specialization}
 - The sid determines all attributes (i.e., the entire record)
 - If two tuples in the relation student have the same sid,
 then they must have the same values on all attributes.
 - In other words they must be the same tuple (since the relational model does not allow duplicate records)

Superkeys and Candidate Keys using FD

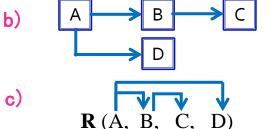
- A set of attributes that determines the entire tuple is a superkey
 - {sid, name} is a superkey for the PGstudent table.
 - Also {sid, name, supervisor_id} etc.
- A minimal set of attributes that determines the entire tuple is a candidate key
 - {sid, name} is not a candidate key because I can remove the name.
 - sid is a candidate key
- If there are multiple candidate keys, the DB designer chooses designates one as the primary key.

Notes

- Attributes of FD can be single or composite.
- If K in relation R be a Super Key (SK) or Candidate Key (CK) and G⊆HR then

How to represent the FD of a relation?

a)
$$F=\{A\rightarrow B, B\rightarrow C, A\rightarrow D\}$$



Notes

- A FD in R is undesirable when the determinant is not a candidate key of R.
- Review: A candidate key is a superkey with no proper subset that uniquely identifies a tuple of a relation. {uniqueness property + irreducibility}

Notes

- A FD in R is undesirable when the determinant is not a candidate key of R.
- Review: A candidate key is a superkey with no proper subset that uniquely identified a total of a relation (uniqueness property +

Definition

A candidate key is a set X of attributes in R such that

- X^+ includes all the attributes in R.
- There is no proper subset Y of X such that Y^+ includes all the attributes in R.

Note: A proper subset Y is a subset of X such that $Y \neq X$ (i.e., X has at least one element not in Y).

Uses of Attribute Closure

- Testing for superkey
 - To test if X is a superkey, we compute X^{+} , and check if X^{+} contains all attributes of R.
- Testing functional dependencies
 - To check if a functional dependency X → Y holds (or, in other words, X → Y is in F⁺), just check if Y ⊆ X⁺.
- Computing the closure of F
 - − For each subset $X \subseteq R$, we find the closure X^+ , and for each $Y \subseteq X^+$, we output a functional dependency $X \to Y$.
- Computing if two sets of functional dependencies F and G are equivalent, i.e., F+ = G+
 - For each functional dependency Y→Z in F
 - Compute Y+ with respect to G
 - If $Z \subset Y+$ then $Y\rightarrow Z$ is in G+
 - And vice versa

Redundancy of FDs

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - $\{A\}\rightarrow\{C\}$ is redundant in: $\{\{A\}\rightarrow\{B\}, \{B\}\rightarrow\{C\}, \{A\}\rightarrow\{C\}\}\}$
- Parts of a functional dependency may be redundant
 - Example of extraneous/redundant attribute on RHS: $\{\{A\}\rightarrow \{B\}, \{B\}\rightarrow \{C\}, \{A\}\rightarrow \{C,D\}\}\}$ can be simplified to $\{\{A\}\rightarrow \{B\}, \{B\}\rightarrow \{C\}, \{A\}\rightarrow \{D\}\}\}$ (because $\{A\}\rightarrow \{C\}$ is inferred from $\{A\}\rightarrow \{B\}, \{B\}\rightarrow \{C\}$)
 - Example of extraneous/redundant attribute on LHS: $\{\{A\}\rightarrow \{B\}, \{B\}\rightarrow \{C\}, \{A,C\}\rightarrow \{D\}\}\}\$ can be simplified to $\{\{A\}\rightarrow \{B\}, \{B\}\rightarrow \{C\}, \{A\}\rightarrow \{D\}\}\}\$ (because of $\{A\}\rightarrow \{C\}$)

Canonical Cover

- A canonical cover for F is a set of dependencies F_c such that
 - F and F_c are equivalent
 - F_c contains no redundancy
 - Each left side of functional dependency in F_c is unique.
 - For instance, if we have two FD $X\rightarrow Y$, $X\rightarrow Z$, we convert them to $X\rightarrow YZ$.
- Algorithm for canonical cover of F: repeat

Use the union rule to replace any dependencies in F $X_1 \to Y_1$ and $X_1 \to Y_2$ with $X_1 \to Y_1 Y_2$ Find a functional dependency $X \to Y$ with an extraneous attribute either in X or in YIf an extraneous attribute is found, delete it from $X \to Y$ until F does not change

 Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

Example of Computing a Canonical Cover

•
$$R = (A, B, C)$$

 $F = \{A \rightarrow BC\}$
 $B \rightarrow C$
 $A \rightarrow B$
 $AB \rightarrow C$

- Combine $A \to BC$ and $A \to B$ into $A \to BC$
 - Set is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- A is extraneous in $AB \rightarrow C$ because of $B \rightarrow C$.
 - Set is now $\{A \rightarrow BC, B \rightarrow C\}$
- C is extraneous in $A \to BC$ because of $A \to B$ and $B \to C$.
- The canonical cover is:

$$A \rightarrow B$$

 $B \rightarrow C$

Pitfalls in Relational Database Design

- Relational database design requires that we find a "good" collection of relation schemas.
- Functional dependencies can be used to refine ER diagrams or independently (i.e., by performing repetitive decompositions on a "universal" relation that contains all attributes).
- A bad design may lead to several problems.

FD in RDB

Problems of Bad Design

Assume the position determines the salary: position \rightarrow salary first name address department position salary last name Dewi Srijaya 12a Jln Lempeng Toys clerk 2000 Izabel Leona 10 Outram Park Sports trainee 1200 107 Clementi Rd Toys clerk 2000 John Smith Redundant storage Baver 55 Cuscaden Rd Sports 1200 Axel trainee Winny 10 West Coast Rd Sports 2500 Lee manager Update anomaly 2600 Sylvia Tok 22 East Coast Lane Toys manager Eric Wei 100 Jurona drive Toys assistant manager 2200 security guard 1500 key Potential deletion anomaly Insertion anomaly

Decomposition Example

T2

first_name	last_name	address	department	position
Dewi	Srijaya	12a Jln lempeng	Toys	clerk
Izabel	Leong	10 Outram Park	Sports	trainee
John	Smith	107 Clementi Rd	Toys	clerk
Axel	Bayer	55 Cuscaden Rd	Sports	trainee
Winny	Lee	10 West Coast Rd	Sports	manager
Sylvia	Tok	22 East Coast Lane	Toys	manager
Eric	Wei	100 Jurong drive	Toys	assistant manager

T3

position	salary
clerk	2000
trainee	1200
manager	2500
assistant manager	2200
security guard	1500

■No Redundant storage

■No Update anomaly

■No Deletion anomaly

■No Insertion anomaly

Normalization

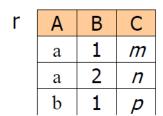
- Normalization is the process of decomposing a relation schema R into **fragments** (i.e., smaller tables) R₁, R₂,..., R_n. Our goals are:
 - Lossless decomposition: The fragments should contain the same information as the original table. Otherwise decomposition results in information loss.
 - Dependency preservation: Dependencies should be preserved within each R_i, i.e., otherwise, checking updates for violation of functional dependencies may require computing joins, which is expensive.
 - Good form: The fragments R_i should not involve redundancy. Roughly speaking, a table has redundancy if there is a FD where the LHS is not a key (more on this later).

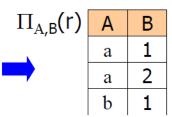
Lossless Join Decomposition

- A decomposition is lossless (aka lossless join) if we can recover the initial table
- In general a decomposition of R into R₁ and R₂ is lossless if and only if at least one of the following dependencies is in F+:
 - $-R_1 \cap R_2 \rightarrow R_1$
 - $-R_1 \cap R_2 \rightarrow R_2$
 - In other words, the common attribute of R₁ and R₂ must be a candidate key for R₁ or R₂.
- Is the previous decomposition example (T2, T3) lossless?
 - Yes because the common attribute of T2, T3 is position and it determines the salary; therefore it is a key for T3.

Example of a Lossy Decomposition

• Decompose R = (A,B,C) into $R_1 = (A,B)$ and $R_2 = (B,C)$





$$\Pi_{B,C}(r)$$
 $\begin{array}{c|cccc} B & C \\ \hline 1 & m \\ \hline 2 & n \\ \hline 1 & p \\ \end{array}$

$$\Pi_{A,B}(r) \bowtie \Pi_{B,C}(r)$$

Α	В	С
a	1	m
a	1	p
a	2	n
b	1	m
b	1	p

It is a lossy decomposition:

two extraneous tuples.

You get more, not less!!

B is not a key of either small table

Dependency Preserving Decomposition

- The decomposition of a relation scheme R with FDs F is a set of tables (fragments) R_i with FDs F_i
- F_i is the subset of dependencies in F⁺ (the closure of F) that include only attributes in R_i.
- The decomposition is dependency preserving if and only if

$$(\cup_i F_i)^+ = F^+$$

Non Dependency Preserving Decomposition Example

$$R = (A, B, C), F = \{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}, \{A\} \rightarrow \{C\}\}\}.$$
 Key: A

There is a dependency $\{B\} \rightarrow \{C\}$, where the LHS is not the key, meaning that there can be considerable redundancy in R.

Solution: Break it in two tables R1(A,B), R2(A,C) (normalization)

A	В	C
1	2	3
2	2	3
3	2	3
4	ח	5

A	В
1	2
2	2
3	2
4	Ŋ

A	C
1	3
2	3
3	3
4	6

The decomposition is lossless because the common attribute A is a key for R1 (and R2)

The decomposition is not dependency preserving because F1={{A} \rightarrow {B}}, F2={{A} \rightarrow {C}} and (F1 \cup F2)+ \neq F+. We lost the FD {B} \rightarrow {C}.

In practical terms, each FD is implemented as an assertion, which it is checked when there are updates. In the above example, in order to find violations, we have to join R1 and R2. Can be very expensive.

Dependency Preserving Decomposition Example

R = (A, B, C), F = $\{\{A\}\rightarrow\{B\}, \{B\}\rightarrow\{C\}, \{A\}\rightarrow\{C\}\}\}$. Key: A Break R in two tables R1(A,B), R2(B,C)

A	В	C
1	2	3
2	2	3
3	2	3
4	IJ	D

A	В
1	2
2	2
3	2
1	Л

В	C
2	3
ធ	D

The decomposition is lossless because the common attribute B is a key for R2

The decomposition is dependency preserving because F1={{A} \rightarrow {B}}, F2={{B} \rightarrow {C}} and (F1 \cup F2)+=F+

Violations can be found by inspecting the individual tables, without performing a join.